The Nature of Explosive Percolation Phase Transition
نویسندگان
چکیده
In this Letter, we show that the explosive percolation is a novel continuous phase transition. The order-parameter-distribution histogram at the percolation threshold is studied in Erd˝ os-Rényi networks, scale-free networks, and square lattice. In finite system, two well-defined Gaussian-like peaks coexist, and the valley between the two peaks is suppressed with the system size increasing. This finite-size effect always appears in typical first-order phase transition. However, both of the two peaks shift to zero point in a power law manner, which indicates the explosive percolation is continuous in the thermodynamic limit. The nature of explosive percolation in all the three structures is belong to this novel continuous phase transition. Various scaling exponents concerning the order-parameter-distribution are obtained.
منابع مشابه
Bond-site duality and nature of the explosive-percolation phase transition on a two-dimensional lattice.
To establish the bond-site duality of explosive percolations in two dimensions, the site and bond explosive-percolation models are carefully defined on a square lattice. By studying the cluster distribution function and the behavior of the second largest cluster, it is shown that the duality in which the transition is discontinuous exists for the pairs of the site model and the corresponding bo...
متن کاملExplosive percolation in graphs
Percolation is perhaps the simplest example of a process exhibiting a phase transition and one of the most studied phenomena in statistical physics. The percolation transition is continuous if sites/bonds are occupied independently with the same probability. However, alternative rules for the occupation of sites/bonds might affect the order of the transition. A recent set of rules proposed by A...
متن کاملSolution of the explosive percolation quest: scaling functions and critical exponents.
Percolation refers to the emergence of a giant connected cluster in a disordered system when the number of connections between nodes exceeds a critical value. The percolation phase transitions were believed to be continuous until recently when, in a new so-called "explosive percolation" problem for a competition-driven process, a discontinuous phase transition was reported. The analysis of evol...
متن کاملDegree product rule tempers explosive percolation in the absence of global information.
We introduce a guided network growth model, which we call the degree product rule process, that uses solely local information when adding new edges. For small numbers of candidate edges our process gives rise to a second-order phase transition, but becomes first order in the limit of global choice. We provide the set of critical exponents required to characterize the nature of this percolation ...
متن کاملExplosive phase transitions in percolation processes
Percolation processes are well studied in physics. In theoretical physics, directed percolation (DP) is a representative of a well-known universality class of continuous phase transitions [1]. DP has been used to model a variety of phenomena including turbulence, liquids percolating through porous media, epidemics and forest fires [2]. In the Erdös-Rényi model, it is known that the order parame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1010.5990 شماره
صفحات -
تاریخ انتشار 2010